How to build Animated Charts like Hans Rosling in Plotly
⏱ Время чтения текста – 12 минутHans Rosling’s work on world countries economic growth presented in 2007 at TEDTalks can be attributed to one of the most iconic data visualizations, ever created. Just check out this video, in case you don’t know what we’re talking about:
Sometimes we want to compare standards of living in other countries. One way to do this is to refer to the Big Mac index, which the Economist magazine has kept track of since 1986. The key idea this index represents is to measure purchasing power parity (PPP) in different countries, considering costs of domestic production. To make a standard burger, one would need the following ingredients: cheese, meat, bread and vegetables. Considering that all these ingredients can be produced locally, we can compare the production cost of one Big Mac in different countries, and measure purchasing power. Plus, McDonald’s is the world’s most popular franchise network, its restaurants are almost everywhere around the globe.
In today’s material, we will build a Motion Chart for the Big Mac index using Plotly. Following Hann Rosling’s idea, the chart will display country population along the X-axis and GDP per capita in US dollars along the Y. The size of the dots is going to be proportional to the Big Mac Index for a given country. And the color of the dots will represent the continent where the country is located.
Preparing Data
Even though The Economist has been updating it for over 30 years and sharing its observations publicly, the dataset contains many missing values. It also lacks continents names, but we can handle it by supplementing the data with some more datasets that can be found in our repo.
Let’s start by importing the libraries:
import pandas as pd
from pandas.errors import ParserError
import plotly.graph_objects as go
import numpy as np
import requests
import io
We can access the dataset directly from GitHub. Just use the following function to send a GET request to a CSV file and create a Pandas DataFrame. However, in some cases, this may raise a ParseError because of the caption title, so we will add a try block:
def read_raw_file(link):
raw_csv = requests.get(link).content
try:
df = pd.read_csv(io.StringIO(raw_csv.decode('utf-8')))
except ParserError:
df = pd.read_csv(io.StringIO(raw_csv.decode('utf-8')), skiprows=3)
return df
bigmac_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/big-mac.csv')
population_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/population.csv')
dgp_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/gdp.csv')
continents_df = read_raw_file('https://github.com/valiotti/leftjoin/raw/master/motion-chart-big-mac/continents.csv')
From The Economist dataset we will need these columns: country name, local price, dollar exchange rate, country code (iso_a3) and record date. Take the timeline from 2005 to 2020, as the records are most complete for this span. And divide the local price by the exchange rate to calculate the price of one Big Mac in US dollars.
bigmac_df = bigmac_df[['name', 'local_price', 'dollar_ex', 'iso_a3', 'date']]
bigmac_df = bigmac_df[bigmac_df['date'] >= '2005-01-01']
bigmac_df = bigmac_df[bigmac_df['date'] < '2020-01-01']
bigmac_df['date'] = pd.DatetimeIndex(bigmac_df['date']).year
bigmac_df = bigmac_df.drop_duplicates(['date', 'name'])
bigmac_df = bigmac_df.reset_index(drop=True)
bigmac_df['dollar_price'] = bigmac_df['local_price'] / bigmac_df['dollar_ex']
Take a look at the result:
Next, let’s try adding a new column called continents. To ease the task, leave only two columns containing country code and continent name. Then we need to iterate through the bigmac_df[‘iso_a3’] column, adding a continent name for the corresponding values. However some cases may raise an error, because it’s not really clear, whether a country belongs to Europe or Asia, we will consider such cases as Europe by default.
continents_df = continents_df[['Continent_Name', 'Three_Letter_Country_Code']]
continents_list = []
for country in bigmac_df['iso_a3']:
try:
continents_list.append(continents_df.loc[continents_df['Three_Letter_Country_Code'] == country]['Continent_Name'].item())
except ValueError:
continents_list.append('Europe')
bigmac_df['continent'] = continents_list
Now we can drop unnecessary columns, apply sorting by country names and date, convert values in the date column into integers, and view the current result:
bigmac_df = bigmac_df.drop(['local_price', 'iso_a3', 'dollar_ex'], axis=1)
bigmac_df = bigmac_df.sort_values(by=['name', 'date'])
bigmac_df['date'] = bigmac_df['date'].astype(int)
Then we need to fill up missing values for The Big Mac index with zeros and remove the Republic of China, since this partially recognized state is not included in the World Bank datasets. The UAE occurs several times, this can lead to issues.
countries_list = list(bigmac_df['name'].unique())
years_set = {i for i in range(2005, 2020)}
for country in countries_list:
if len(bigmac_df[bigmac_df['name'] == country]) < 15:
this_continent = bigmac_df[bigmac_df['name'] == country].continent.iloc[0]
years_of_country = set(bigmac_df[bigmac_df['name'] == country]['date'])
diff = years_set - years_of_country
dict_to_df = pd.DataFrame({
'name':[country] * len(diff),
'date':list(diff),
'dollar_price':[0] * len(diff),
'continent': [this_continent] * len(diff)
})
bigmac_df = bigmac_df.append(dict_to_df)
bigmac_df = bigmac_df[bigmac_df['name'] != 'Taiwan']
bigmac_df = bigmac_df[bigmac_df['name'] != 'United Arab Emirates']
Next, let’s augment the data with GDP per capita and population from other datasets. Both datasets have differences in country names, so we need to specify such cases explicitly and replace them.
years = [str(i) for i in range(2005, 2020)]
countries_replace_dict = {
'Russian Federation': 'Russia',
'Egypt, Arab Rep.': 'Egypt',
'Hong Kong SAR, China': 'Hong Kong',
'United Kingdom': 'Britain',
'Korea, Rep.': 'South Korea',
'United Arab Emirates': 'UAE',
'Venezuela, RB': 'Venezuela'
}
for key, value in countries_replace_dict.items():
population_df['Country Name'] = population_df['Country Name'].replace(key, value)
gdp_df['Country Name'] = gdp_df['Country Name'].replace(key, value)
Finally, extract population data and GDP for the given years, adding the data to the bigmac_df DataFrame:
countries_list = list(bigmac_df['name'].unique())
population_list = []
gdp_list = []
for country in countries_list:
population_for_country_df = population_df[population_df['Country Name'] == country][years]
population_list.extend(list(population_for_country_df.values[0]))
gdp_for_country_df = gdp_df[gdp_df['Country Name'] == country][years]
gdp_list.extend(list(gdp_for_country_df.values[0]))
bigmac_df['population'] = population_list
bigmac_df['gdp'] = gdp_list
bigmac_df['gdp_per_capita'] = bigmac_df['gdp'] / bigmac_df['population']
And here is our final dataset:
Creating a chart in Plotly
The population in China or India, on average, is 10 times more than in other countries. That’s why we need to transform X-axis to Log Scale, to make the chart easier for interpreting. The log-transformation is a common way to address skewness in data.
fig_dict = {
"data": [],
"layout": {},
"frames": []
}
fig_dict["layout"]["xaxis"] = {"title": "Population", "type": "log"}
fig_dict["layout"]["yaxis"] = {"title": "GDP per capita (in $)", "range":[-10000, 120000]}
fig_dict["layout"]["hovermode"] = "closest"
fig_dict["layout"]["updatemenus"] = [
{
"buttons": [
{
"args": [None, {"frame": {"duration": 500, "redraw": False},
"fromcurrent": True, "transition": {"duration": 300,
"easing": "quadratic-in-out"}}],
"label": "Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": False},
"mode": "immediate",
"transition": {"duration": 0}}],
"label": "Pause",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 87},
"showactive": False,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}
]
We will also add a slider to filter data within a certain range:
sliders_dict = {
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"font": {"size": 20},
"prefix": "Year: ",
"visible": True,
"xanchor": "right"
},
"transition": {"duration": 300, "easing": "cubic-in-out"},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": []
}
By default, the chart will display data for 2005 before we click on the “Play” button.
continents_list_from_df = list(bigmac_df['continent'].unique())
year = 2005
for continent in continents_list_from_df:
dataset_by_year = bigmac_df[bigmac_df["date"] == year]
dataset_by_year_and_cont = dataset_by_year[dataset_by_year["continent"] == continent]
data_dict = {
"x": dataset_by_year_and_cont["population"],
"y": dataset_by_year_and_cont["gdp_per_capita"],
"mode": "markers",
"text": dataset_by_year_and_cont["name"],
"marker": {
"sizemode": "area",
"sizeref": 200000,
"size": np.array(dataset_by_year_and_cont["dollar_price"]) * 20000000
},
"name": continent,
"customdata": np.array(dataset_by_year_and_cont["dollar_price"]).round(1),
"hovertemplate": '<b>%{text}</b>' + '<br>' +
'GDP per capita: %{y}' + '<br>' +
'Population: %{x}' + '<br>' +
'Big Mac price: %{customdata}$' +
'<extra></extra>'
}
fig_dict["data"].append(data_dict)
Next, we need to fill up the frames field, which will be used for animating the data. Each frame represents a certain data point from 2005 to 2019.
for year in years:
frame = {"data": [], "name": str(year)}
for continent in continents_list_from_df:
dataset_by_year = bigmac_df[bigmac_df["date"] == int(year)]
dataset_by_year_and_cont = dataset_by_year[dataset_by_year["continent"] == continent]
data_dict = {
"x": list(dataset_by_year_and_cont["population"]),
"y": list(dataset_by_year_and_cont["gdp_per_capita"]),
"mode": "markers",
"text": list(dataset_by_year_and_cont["name"]),
"marker": {
"sizemode": "area",
"sizeref": 200000,
"size": np.array(dataset_by_year_and_cont["dollar_price"]) * 20000000
},
"name": continent,
"customdata": np.array(dataset_by_year_and_cont["dollar_price"]).round(1),
"hovertemplate": '<b>%{text}</b>' + '<br>' +
'GDP per capita: %{y}' + '<br>' +
'Population: %{x}' + '<br>' +
'Big Mac price: %{customdata}$' +
'<extra></extra>'
}
frame["data"].append(data_dict)
fig_dict["frames"].append(frame)
slider_step = {"args": [
[year],
{"frame": {"duration": 300, "redraw": False},
"mode": "immediate",
"transition": {"duration": 300}}
],
"label": year,
"method": "animate"}
sliders_dict["steps"].append(slider_step)
Just a few finishing touches left, instantiate the chart, set colors, fonts and title.
fig_dict["layout"]["sliders"] = [sliders_dict]
fig = go.Figure(fig_dict)
fig.update_layout(
title =
{'text':'<b>Motion chart</b><br><span style="color:#666666">The Big Mac index from 2005 to 2019</span>'},
font={
'family':'Open Sans, light',
'color':'black',
'size':14
},
plot_bgcolor='rgba(0,0,0,0)'
)
fig.update_yaxes(nticks=4)
fig.update_xaxes(tickfont=dict(family='Open Sans, light', color='black', size=12), nticks=4, gridcolor='lightgray', gridwidth=0.5)
fig.update_yaxes(tickfont=dict(family='Open Sans, light', color='black', size=12), nticks=4, gridcolor='lightgray', gridwidth=0.5)
fig.show()
Bingo! The Motion Chart is done:
View the code on GitHub